Nuclear Data Adjustment with Whisper for Criticality Safety **Applications** Michael E. Rising, Jennifer L. Alwin, Alexander R. Clark, Robbie MacQuigg, and Bobbi Riedel **2022 WANDA** February 28 – March 4, 2022 LA-UR-22-21216 ### **Nuclear Criticality Safety** - Nuclear data adjustment supports both criticality safety and reactor analysis/design. - In criticality safety, adjustment has the potential to eliminate conservatism in analysis, but it is dependent on the existence of a large collection of benchmarks that exercise the related data. - An example of the effect of the benchmark collection in a specific criticality safety application analysis is shown in the upcoming slides. ### <u>Acknowledgements</u> This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy. ## What is Whisper? Statistical analysis code using sensitivity/uncertainty-based methods to determine baseline upper subcritical limit (USL) for nuclear criticality safety Steps performed by Whisper: - Benchmark selection - 2. Compute bias and bias uncertainty - 3. Estimate additional margin of subcriticality ### Whisper Use of Nuclear Data Adjustment - Step 3 includes computing margin of subcriticality due to nuclear data. - Using GLLS, we adjust the nuclear data to the entire collection of benchmarks and use the adjusted nuclear data covariance to estimate residual uncertainties from nuclear data. - Real Bias is the difference between simulation and experiment - GLLSM Bias is the difference between the prior and posterior simulation - The difference in these could be considered the *residual uncertainty* ### **Example Use of Nuclear Data Adjustment in Whisper** #### Application **similar** to benchmark suite Bare plutonium application | Whisper Outputs | Value (pcm) | |-------------------------------------|-------------| | Bias | 690 | | Bias Uncertainty | 693 | | ND Uncertainty
(Prior) MOS | 1,375 | | ND Uncertainty
(Posterior) MOS | 59 | | ND Uncertainty
Reduction w/ GLLS | ~95% | ²³⁹Pu Accounts for 94% of Prior Unc. ²³⁹Pu Posterior Unc. ↓ ~95% #### Application **dissimilar** to benchmark suite Plutonium reflected by tantalum | Whisper Outputs | Value (pcm) | |-----------------------------------|-------------| | Bias | 877 | | Bias Uncertainty | 911 | | ND Uncertainty
(Prior) MOS | 3,133 | | ND Uncertainty
(Posterior) MOS | 1,454 | | ND Uncertainty Reduction w/ GLLS | ~53% | | ²³⁹ Pu Accounts for 33% of Prior Unc. | |--| | ¹⁸¹ Ta Accounts for 67% of Prior Unc. | | ²³⁹ Pu Posterior
Unc. ↓ ~95% | | ¹⁸¹ Ta Posterior | Unc. ↓ ~48% ## Takeaways from Bare Pu vs. Ta-reflected Pu Examples - Compared to the hundreds of benchmarks with ²³⁹Pu, only 7 benchmarks in the Whisper library contain ¹⁸¹Ta (all within PMF-045 series) - Therefore, ¹⁸¹Ta adjusted cross section uncertainties are not constrained like the ²³⁹Pu adjusted cross section uncertainties because: - So few (and similar) benchmarks used within the context of GLLS, - The sensitivities of the application differ from those of the benchmarks ### **Conclusions** - Nuclear data adjustment is used by Whisper to compute residual nuclear data uncertainties within a full suite of benchmarks - Requires a complete set of nuclear data covariances, benchmarks and k-effective sensitivity profiles (for both benchmarks and applications) - For applications that are similar to the full benchmark suite, the residual uncertainties add a small margin to the overall USL calculation - For applications that are dissimilar to the full benchmark suite, the residual uncertainties add a reasonable margin to the overall USL calculation (more conservative) - This methodology helps to overcome any issues in the released covariance libraries where nuclear data uncertainties appear to be too large ## Questions? Contact: mrising@lanl.gov ## **Example Use of Nuclear Data Adjustment in Whisper** #### Application **similar** to benchmark suite Bare plutonium application | ND Source of
Uncertainty | Prior
(pcm) | Posterior
(pcm) | |-------------------------------|----------------|--------------------| | 239 Pu, $\bar{ u}$ | 1,229 | 372 | | ²³⁹ Pu (inelastic) | 824 | 372 | | ²³⁹ Pu (elastic) | 479 | 284 | | ²³⁹ Pu (n,f) | 351 | 338 | | ²³⁹ Pu, χ | 299 | 99 | | ²³⁹ Pu (n,γ) | 73 | 70 | #### Application **dissimilar** to benchmark suite Plutonium reflected by tantalum | ND Source of
Uncertainty | Prior
(pcm) | Posterior
(pcm) | |-----------------------------------|----------------|--------------------| | ²³⁹ Pu ($\bar{\nu}$) | 1,245 | 370 | | ²³⁹ Pu (inelastic) | 574 | 242 | | ²³⁹ Pu (elastic) | 257 | 148 | | ²³⁹ Pu (n,f) | 351 | 337 | | ²³⁹ Pu (<i>χ</i>) | 230 | 76 | | ²³⁹ Pu (n,γ) | 100 | 94 | | ¹⁸¹ Ta (inelastic) | 2,680 | 1,548 | | ¹⁸¹ Ta (elastic) | 841 | 818 | | 181 Ta (n, γ) | 261 | 259 |